诸如放大器和转换器等仿照集成电路具有至少两个或两个以上电源引脚。对付单电源器件,个中一个引脚常日连接到地。如ADC和DAC等稠浊旗子暗记器件可以具有仿照和数字电源电压以及I/O电压。像FPGA这样的数字IC还可以具有多个电源电压,例如内核电压、存储器电压和I/O电压。
不管电源引脚的数量如何,IC数据手册都详细解释了每路电源的许可范围,包括推举事情范围和最大绝对值,而且为了保持正常事情和防止破坏,必须遵守这些限定。
然而,由于噪声或电源纹波导致的电源电压的眇小变革—即便仍在推举的事情范围内—也会导致器件性能低落。例如在放大器中,眇小的电源变革会产生输入和输出电压的眇小变革,如图1所示。

图1. 放大器的电源抑制显示输出电压对电源轨变革的灵敏度。
放大器对电源电压变革的灵敏度常日用电源抑制比(PSRR)来量化,其定义为电源电压变革与输出电压变革的比值。
图1显示了范例高性能放大器(OP1177)的PSR随频率以大约6dB/8倍频程(20dB/10倍频程)低落的情形。图中显示了采取正负电源两种情形下的曲线图。只管PSRR在直流下是120dB,但较高频率下会迅速降落,此时电源线路上有越来越多的无用能量会直接耦合至输出。
如果放大器正在驱动负载,并且在电源轨上存在无用阻抗,则负载电流会调制电源轨,从而增加互换旗子暗记中的噪声和失落真。
只管数据手册中可能没有给呈现实的PSRR,数据转换器和其他稠浊旗子暗记IC的性能也会随着电源上的噪声而降落。电源噪声也会以多种办法影响数字电路,包括降落逻辑电平噪声容限,由于时钟抖动而产生时序缺点。
◀ 适当的局部去耦在PCB上是必不可少的
范例的4层PCB常日设计为接地层、电源层、顶部旗子暗记层和底部旗子暗记层。表面贴装IC的接地引脚通过引脚上的过孔直接连接到接地层,从而最大限度地减少接地连接中的无用阻抗。
电源轨常日位于电源层,并且路由到IC的各种电源引脚。显示电源和接地连接的大略IC模型如图2所示。
图2. 显示走线阻抗和局部去耦电容的IC模型
IC内产生的电流表示为IT。流过走线阻抗Z的电流产生电源电压VS的变革。如上所述,根据IC的PSR,这会产生各种类型的性能降落。
通过利用尽可能短的连接,将适当类型的局部去耦电容直接连接到电源引脚和接地层之间,可以最大限度地降落对功率噪声和纹波的灵敏度。去耦电容用作瞬态电流的电荷库,并将其直接分流到地,从而在IC上保持恒定的电源电压。虽然回路电流路径通过接地层,但由于接地层阻抗较低,回路电流一样平常不会产生明显的偏差电压。
图3显示了高频去耦电容必须尽可能靠近芯片的情形。否则,连接走线的电感将对去耦的有效性产生不利影响。
图3. 高频去耦电容的精确和缺点放置
图3左侧,电源引脚和接地连接都可能短,所以是最有效的配置。然而在图3右侧中,PCB走线内的额外电感和电阻将造成去耦方案的有效性降落,且增加封闭环路可能造成滋扰问题。
◀ 选择精确类型的去耦电容
低频噪声去耦常日须要用电解电容(范例值为1µF至100µF),以此作为低频瞬态电流的电荷库。将低电感表面贴装陶瓷电容(范例值为0.01µF至0.1µF)直接连接到IC电源引脚,可最大程度地抑制高频电源噪声。所有去耦电容必须直接连接到低电感接地层才有效。此连接须要短走线或过孔,以便将额外串联电感降至最低。
大多数IC数据手册在运用部分解释了推举的电源去耦电路,用户应始终遵照这些建议,以确保器件正常事情。
铁氧体磁珠(以镍、锌、锰的氧化物或其他化合物制造的绝缘陶瓷)也可用于在电源滤波器中去耦。铁氧体在低频下(<100kHz)为感性—因此对低通LC去耦滤波器有用。100kHz以上,铁氧体成阻性(低Q)。铁氧体阻抗与材料、事情频率范围、直流偏置电流、匝数、尺寸、形状和温度成函数关系。
铁氧体磁珠并非始终必要,但可以增强高频噪声隔离和去耦,常日较为有利。这里可能须要验证磁珠永久不会饱和,特殊是在运算放大器驱动高输出电流时。当铁氧体饱和时,它就会变为非线性,失落去滤波特性。
请把稳,某些铁氧体乃至可能在完备饱和前就是非线性。因此,如果须要功率级,以低失落真输出事情,当原型在此饱和区域附近事情时,应检讨个中的铁氧体。范例铁氧体磁珠阻抗如图4所示。
图4. 铁氧体磁珠的阻抗
在为去耦运用选择得当的类型时,须要仔细考虑由于寄生电阻和电感产生的非空想电容性能。
以上图文内容均转载自订阅号:电子工程天下(微信搜索 eeworldbbs 关注)
欢迎微博@EEWORLD
如果您也写过此类原创干货欢迎将您的原创发至:bbs_service@eeworld.com.cn,一经入选,我们将帮你登上头条!
与更多行业内网友进行互换请上岸EEWorld论坛。