到20世纪中叶,电力已然在人们的生活中发挥着重要浸染。爱迪生发明的电灯通过照亮街道、工厂和住宅,提高了生产力、生活质量和安全性;通过高效电机实现的制冷,改变了家庭中易腐食品的储存办法,同时在从农场运送到市场的过程中能够实现对其的低温保存。在双极晶体管发明之后,用电子开关代替这些运用的机器致动器成为可能。对付在高功率水平下运行的运用,空想的电子开关必须具有以下特性:(a)高压阻断能力;(b) 低导通状态电压降以减少传导损耗;(c) 电压和电流的快速切换能力,以将切换损耗最小化;(d) 在开关瞬态期间耐受,同时具有施加高电压和高电流的能力;(e) 利用具有低驱动电流的小电压掌握电流,以许可驱动电子器件的集成;(f)驱动电压掌握下的电流饱和,以知足缓冲元件的须要。此外,空想的功率晶体管该当能够在第一象限和第三象限中对称事情。在过去的60年中,技能的创新与发展创造了知足这些哀求的功率晶体管。
本文重点先容了自20世纪60年代以来涌现的主要功率晶体管创新,这些创新使得数字功率掌握(脉宽调制)取代仿照功率掌握(相位掌握)成为可能。这些创新最初须要改变硅基晶体管的器件构造和物理特性。随后,通过用宽带隙半导体材料代替硅,实现了更明显的性能增强。
功率双极晶体管架构(图1左侧)与旗子暗记晶体管不同,它须要支持高电压和掌握功率运用中所需的高电流。功率晶体管须要垂直构造,个中一个高电流端子(集电极)位于芯片底部,另一个高电压端子(发射极)在顶部。基极度子必须与发射极交叉,由于发射极拥挤效应,通态电流集中在发射极边缘。须要具有低掺杂浓度的厚漂移区来支持高电压,只管有一些电导率调制,但仍存在大的导通电阻。最主要的是,为了避免通过有限的击穿到达,大的基极宽度是必要的,这也会导致低电流增益(常日在导通状态下小于10)。在关断期间须要较大的反向基极驱动电流,以缩短存储韶光,导致电流增益仅为2。因此须要体积弘大且繁芜的基极驱动电路,这会产生可靠性问题。功率双极晶体管的安全事情区域也很差,须要增加缓冲元件。
达林顿功率双极晶体管(图1右侧)能够改进低通态电流增益的问题。它利用基极驱动晶体管T1向输出晶体管T2供应驱动电流,如图1中的等效电路所示。这种方法许可在导通状态下增加电流增益,但关断增益仍旧很差。更主要的是,由于晶体管T1的电流流经晶体管T2的基极-发射极结,达林顿功率晶体管具有类似二极管的导通状态特性。这使得其导通状态压降比单个双极晶体管大得多。
图1.功率双极晶体管的发展。
图2.功率金属氧化物半导体场效应晶体管的发展。
20世纪70年代,CMOS技能在集成电路中的运用使得制造功率金属氧化物半导体场效应晶体管(MOSFET)成为可能。双扩散或D型MOSFET(图2左侧)最初由几家公司(International Rectifier,Siliconix)商业化。它的沟道长度由P基极和N+源极区的扩散深度差决定,许可在5μm光刻工艺的情形下实现短沟道长度(1至1.5μm)。该器件还具有垂直构造,其包含具有低掺杂浓度的厚漂移区以支持高电压,它为具有高阻断电压的器件增加了大量的导通电阻。当向栅极施加正栅极驱动电压以在P基极区域的表面处勾引反转层以产生沟道时,就会发生导通状态电流流动。对付具有低阻断电压(<100V)的器件,沟道和JFET区域的电阻基本长进献了总导通电阻。当阻断电压小于100V时,该器件就会表现出空想电子开关的大部分期望特性。
为了实现更低的导通电阻,业界在20世纪90年代引入了功率U-MOSFET(图2右图)(Siliconix)。该构造肃清了JFET区域电阻,从而许可增加沟道密度。对付额定电压为30 V的器件,U-MOSFET将导通电阻降落了3倍。然而,器件的输入电容(图2中等效电路中的CGS)增加,大大降落了开关速率。然而,整体性能的提高使这种构造设计在20世纪90年代霸占主导地位。
随着20世纪90年代二维电荷耦合观点的提出,硅功率MOSFET的性能提高方面取得了重大打破。第一种方法是在深槽内利用源电极来产生所需的2D电荷耦合。漂移区中具有线性梯度掺杂分布的GD-MOSFET(图3左侧)能够极大地改进漂移区中的电场分布,许可将其掺杂浓度增加到远高于(>10倍)图2所示的设计。这种方法将漂移区电阻降落到远低于先前认为的硅材料空想导通电阻的极限。该器件构造现在常日被称为分裂栅MOSFET(由于它只包含一个栅电极,以是用词不当),其阻断电压高达150 V,已成为领先的功率器件公司(Alpha和Omega,Infineon)制造的最受欢迎的产品,广泛用于为台式机和条记本电脑中的微处理器和图形芯片的电源系统。
图3.功率金属氧化物半导体场效应晶体管的发展。
第二种方法(Lorenz,Infineon,ISPSD 1999)利用通过添加与N型漂移区并联操作的深P型漂移区而产生的垂直结来实现2D电荷耦合。这种器件设计(图3右侧)常日被称为超结(SJ)MOSFET,已成为制造阻断电压为600–900 V的产品的主流方法。这些器件用于开关损耗占主导地位的电机驱动运用,目前许多公司都供应此类产品(英飞凌,意法半导体)。
绝缘栅双极晶体管(IGBT)于20世纪80年代始创造、开拓并商业化。器件构造(图4左侧)可以设计为在第一象限和第三象限(对称IGBT)的结J1和J2处阻断电压,或者仅在第一象限(不对称IGBT)阻断电压。IGBT通过利用正栅极偏置创建MOS沟道来事情,该偏置将基极驱动电流运送到内部宽基极P-N-P双极晶体管。在同一漂移区内,通过沟道利用电子和通过P-N-P晶体管利用空穴产生集电极电流,称为MOS双极电流传输。该器件可以通过将栅极电压降落到零来关闭电子供应。
由于采取了宽基极P-N-P晶体管,而不是当时用于功率晶体管的窄基极N-P-N晶体管,因此所提出的IGBT设计是一个具有革命性的改变。疑惑论者认为,这将严重限定电流,使该器件不如功率双极晶体管。我的剖析基于N基区(N漂移区)内的高电平注入,预测了纵然在高电流密度下也具有低导通状态压降的P-i-N整流器式导通状态特性。幸运的是,在制造和测试实际设备时,这种剖析被证明是精确的。
IGBT的一个紧张障碍是内部4层晶闸管的潜在闭锁,这可能会导致毁坏性故障。利用添加到基本双扩散MOSFET工艺中的深P+区域(图4左图)能够办理这个问题。当时人们认为IGBT仅适用于低事情频率,因此限定了其运用,由于当时掌握少数载流子寿命的方法会破坏MOS栅极构造。幸运的是,我创造了一种工艺,该工艺许可利用高能电子辐照来缩短漂移区的寿命,然后进行低温退火工艺,以去除栅极氧化物中的破坏。这对付创建能够在大范围的交流速率下运行的IGBT至关主要(BaligaIEEE EDL,1983),从而在GE内部开辟了广泛的运用领域。
图4.绝缘栅双极晶体管(IGBT)的发展。
根据我在1980年11月的演讲,我预测了IGBT在通用电气公司电机驱动、照明、电器和医疗部门的广泛影响,董事长杰克·韦尔奇(Jack Welch)批准全力支持我的IGBT开拓和商业化。基于这种支持,我能够在不到10个月的韶光内直接在功率MOSFET生产线上设计和制造IGBT。由于公司的严格审查,这必须在芯片设计和工艺定义过程中毫无瑕疵地完成,以确保首次实验成功。这是使IGBT大量用于GE制造第一台热泵用可调速电机驱动器和新型灯具的关键一步,这些灯具是20世纪90年代商业化的紧凑型荧光灯的先驱。由于IGBT对通用电气运用的代价,杰克·韦尔奇禁止发布任何有关IGBT的信息。1983年6月,半导体产品部宣告推出IGBT产品D94F4,终极冲破了这一禁令。通用电气公司推动了该产品的运用,并得到了“年度产品”奖。从1983年到1985年,通用电气发布了我关于IGBT属性的文章,从1985年开始,日本的许多公司(东芝、三菱电机、富士电机)开拓并推出了此类产品。
20世纪90年代,欧洲(ABB、西门子)也进行了IGBT创新。P+发射极区区域被晶圆底部具有低掺杂浓度的薄P扩散代替,以降落注入效率。研究创造,这可以减少更换电力机车驱动运用中的栅极关断(GTO)晶闸管所需的极高电压(>4kV)器件的开关损耗。这项技能在欧洲和日本得到迅速优化,广泛运用于城市和长途公共交通。
通过采取沟槽栅极构造,改进了IGBT的导通状态、压降和开关速率之间的平衡。沟槽栅极设计(图4右侧)增加了沟道密度,为内部双极晶体管供应了更多的驱动电流,以减少导通电压降。另一个被证明可以提高高压IGBT器件性能的设计创新是具有窄P基极区域的深沟槽构造(图5)。这种方法增强了漂移区的电导率调制,从而产生较低的导通状态电压降。
在过去40年中,IGBT在各种运用中变得非常盛行,它被广泛运用于各个领域,例如交通、照明、消费者、工业、医疗等,以提高全天下数十亿人的生活质量。1990-2020年,汽油动力汽车和卡车利用IGBT的电子点火系统的创建使汽油花费量减少了1.8万亿加仑。1990-2020年间,利用IGBT的可调速电机驱动器的开拓使电力花费量减少73000太瓦时。利用IGBT电子镇流器的200亿盏紧凑型荧光灯的支配在1990年至2020年期间减少了5.99万太瓦时的电力花费。IGBT的这些运用为消费者节省了33.6万亿美元,同时在1990年到2020年间减少了181万亿英镑的二氧化碳排放,以缓解环球变暖。
图5.绝缘栅双极晶体管(IGBT)的发展。
所有太阳能和风力发电都依赖于利用IGBT将能量转换为可运送到电网的稳定的50或60 Hz互换电。此外,IGBT用于驱动所有电动汽车中的电机的逆变器。因此,它将在肃清发电和运输部门的化石燃料以应对景象变革方面发挥主要浸染。
用宽带隙半导体代替硅的影响首先通过推导将垂直单极功率器件中的漂移区电阻与基本材料特性干系的方程而得到认识,现在常日称为Baliga's Figure of Merit或BFOM。该方程预测利用砷化镓的电阻会降落13.7倍,利用碳化硅(SiC)的电阻会降落100倍以上。20世纪90年代,6H SiC晶片问世后,通过制造400 V肖特基整流器以及随后的第一个高性能SiC功率MOSFET,验证了该理论。这须要改变功率MOSFET构造以(a)屏蔽P基极区域以防止穿透击穿;(b) 保护栅极氧化物免受高电场的影响;以及(c)采取累积沟道来增加沟道迁移率。目前市情上可买到的4H-SiC平面栅MOSFET构造采取带积累或反转通道的屏蔽构造(图6)。
用于硅功率MOSFET的D-MOSFET工艺不能用于SiC器件,由于纵然在导致升华的非常高的温度下,掺杂剂在该材料中的扩散也微不足道。因此,通道是由用于形成P基和N+源区的P型和N型掺杂剂的交错离子注入形成的。这须要高分辨率光刻,以产生在功率MOSFET中实现低导通状态电阻所需的亚微米沟道长度,该技能广泛用于商用SiC平面栅功率MOSFET。
图6.平面栅碳化硅功率MOSFET的发展。
通过用SiC功率MOSFET更换硅IGBT,电机驱动器中开关功率损耗有效减少。然而,目前SiC功率MOSFET的本钱是同等额定硅IGBT的3倍多,阻碍了其商业可行性。为战胜该技能的较高本钱,业界采纳的策略因此高得多的频率操作电力电子设备,以降落无源元件(如电感器和滤波器)的本钱,从而降落总体本钱。SiC功率MOSFET在较高频率下的操作须要设计创新,以减少开关期间的漏极电流和电压瞬变韶光。通过减少栅极-漏极电荷,可以在SiC功率MOSFET中实现开关期间更快的漏极电压瞬变韶光。
实现这一点的一种创新设计(图7左侧)采取了JFET区域内的中心植入P+区域。须要额外的工艺步骤来添加P+区,并且必须将其连接到与横截面正交的源电极。第二种创新方法(图7中间)是分裂栅器件设计,个中栅极的宽度在JFET区域上缩短。这种设计将栅极-漏极电荷减少了2.4倍,而无需任何额外的工艺步骤。第三种创新设计方法,个中P+屏蔽区的边缘延伸到分离栅电极的边缘之外。这种设计将栅极-漏极电荷减少了6倍,但须要额外的工艺步骤以包括第二JFET区域。
图7.平面栅碳化硅功率MOSFET的发展。
在利用硅IGBT的H桥拓扑的范例电压源逆变器中,有必要连接一个反并联二极管,以运行电机的可调速驱动器。原则上,由于电流流经P-N二极管,SiC功率MOSFET不须要反并联二极管。然而,已经创造这种方法在升温条件下,由于双极二极管反向规复征象会导致高的开关功率丢失。此外,创造了SiC功率MOSFET的双极退化征象,个中由于P-N二极管双极电流在漂移区中产生毛病。分立结势垒掌握的肖特基(JBS)二极管可以连接在SiC功率MOSFET两端,以防止电流流过体二极管。这增加了另一个具有显著SiC芯片面积和本钱的封装组件。如图8所示的创新设计将JBS二极管集成到SiC功率MOSFET单元构造中。
图8.碳化硅功率MOSFET的发展。
与硅功率MOSFET的情形一样,沟槽栅极技能可用于SiC功率MOSFET,以减少由于JFET区域的肃清和沟道密度的增加而导致的导通电阻。这种方法的紧张寻衅是沟槽底部的栅极氧化物中存在非常高的电场,这可能导致不可靠的操作,乃至导致灾害性的故障。办理这个问题的第一个创新设计(图9左侧)利用了沟槽底部的P+屏蔽区,该区与垂直于横截面的源极电极相连。第二种方法(图9中间)利用了两个沟槽区域,一个用于形成栅极构造,另一个更深的沟槽区域用于屏蔽栅极氧化物。第三种方法(图9右侧)利用浅沟槽形成栅极构造,利用两个深沟槽屏蔽栅极氧化物。在所有三种设计中,当屏蔽栅氧化物时产生JFET区,栅氧化物必须充分掺杂以降落导通电阻而不降落击穿电压。在第一种方法中不雅观察到良好的导通电阻、击穿电压和栅极氧化物屏蔽,而在具有较高导通电阻的第三种方法中,不雅观察到最低的栅极氧化物电场。
如本文开头所述,在过去60年中,功率半导体界的“圣杯”是创建一个在第一象限和第三象限具有对称行为的功率开关,具有电流饱和、低导通状态压降和快速切换能力的栅极电压掌握输出特性。电力电子工程师已经利用多个分立器件来组装这样的开关,以用于矩阵转换器。最近通过集成两个JBSFET(图10),实现了一种紧凑的单片4端双向电源开关,命名为BiDFET。这些设备将使新一代电力电子产品更加紧凑和高效。
图9沟槽栅碳化硅功率MOSFET的发展。
图10.单片SiC双向场效应晶体管(BiDFET)。
利用另一种宽禁带半导体氮化镓(GaN)也可以制造出精良的功率器件。在低本钱、大直径的硅衬底上提升器件质量的GaN外延层是这种方法的独特属性。然而,这须要制造具有漏极、栅极和源极电极的交叉数字化的横向高压功率器件,这可能由于电流拥挤和寄生金属电阻而使芯片设计具有寻衅性。在GaN和氮化铝镓(AlGaN)之间的界面处形成二维电子气体(常日称为2D气体)形成具有低薄层电阻的层,以降落导通电阻。第一个器件(图11左侧)利用金属栅极(肖特基势垒)打仗,在高电子迁移率晶体管(HEMT)器件中产生正常导通畅动。由于这在电力电路中是不可接管的,因此该设计与低压硅MOSFET相结合,形成了BaligaPair或Cascode拓扑。随后,利用凹陷栅极设计创建了常关GaN HEMT器件(图11中间和右侧)。这些设备的横向配置许可在同一芯片上制造多个功率晶体管,从而为条记本电脑和手机充电器等运用构建紧凑的功率集成电路。
图11.氮化镓横向HEMT功率器件。
只管取得了40年的进步,功率半导体器件的创新仍在不断提高其性能。它们已成为为消费者供应更高舒适度、移动性和生活质量的关键技能。只有利用功率半导体器件才能实现从化石燃料向可再生能源的过渡,以知足我们的电力需求和电动汽车的运输需求。
作者简介
Baliga教授是国际公认的功率半导体器件专家。他是美国国家工程院院士和IEEE终生研究员。他在纽约斯克内克塔迪的通用电气研究与发展中央事情了15年,并被付与柯立芝院士的最高科学级别。他于1988年加入北卡罗来纳州立大学,担当正教授,并于1997年晋升为“精彩大学教授”;他是1998年“O.Max Gardner奖”的得到者,该奖项由北卡罗来纳大学理事会颁发给16所组成大学中“对人类福祉做出最大贡献”的一人;以及2011年亚历山大·夸尔斯·霍拉代卓越奖章,这是NCU董事会付与的最大声誉。Baliga教授著有/编辑了22本书和700多篇科学文章。他已得到122项美国专利。《科学美国人》杂志在纪念晶体管发明50周年时将他列为“半导体革命八大领袖”之一。Baliga教授在GE公司发明、开拓了绝缘栅双极晶体管(IGBT)并将其商业化。他作为IGBT的唯一发明者入选国家发明家名人堂。IGBT广泛运用于消费、工业、照明、交通、医疗、可再生能源和其他经济领域。它极大地减少了汽油和电能的利用,为消费者带来了巨大的本钱节约,并减少了环球范围内的二氧化碳排放。他的一本书中详细描述了IGBT的运用和社会影响。2011年10月,他在白宫得到了奥巴马总统颁发的国家技能与创新奖章,这是美国政府对工程师的最高形式的表彰;2012年10月得到普渡州长颁发的北卡罗来纳州科学奖,2015年得到环球能源奖。